REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

TORM TO THE ABOVE ABBRECO.				
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)		
July 2015	Briefing Charts	July 2015-August 2015		
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER		
Synthesis and Reactivity of Backfluoring	nated NHC Carbene Complexes	In-House		
(Briefing Charts)				
		5b. GRANT NUMBER		
		5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)	5d. PROJECT NUMBER			
Rusty L. Blanski and Robert H. Grubbs				
		5e. TASK NUMBER		
		5f. WORK UNIT NUMBER		
		Q1CC		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION		
	×.	REPORT NO.		
Air Force Research Laboratory (AFMC				
AFRL/RQRP				
10 E. Saturn Blvd.				
Edwards AFB, CA 93524-7680				
9. SPONSORING / MONITORING AGENCY	10. SPONSOR/MONITOR'S ACRONYM(S)			
Air Force Research Laboratory (AFMC				
AFRL/RQR				
5 Pollux Drive		11. SPONSOR/MONITOR'S REPORT		
Edwards AFB CA 93524-7048		NUMBER(S)		
		AFRL-RQ-ED-VG-2015-302		
12. DISTRIBUTION / AVAILABILITY STATE	EMENT	I		
1				

Distribution A: Approved for Public Release; Distribution Unlimited.

13. SUPPLEMENTARY NOTES

Briefing Charts presented at American Chemical Society National Meeting; Boston, MA; 17 August 2015. PA#15448.

14. ABSTRACT

Briefing Charts

15. SUBJECT TERMS

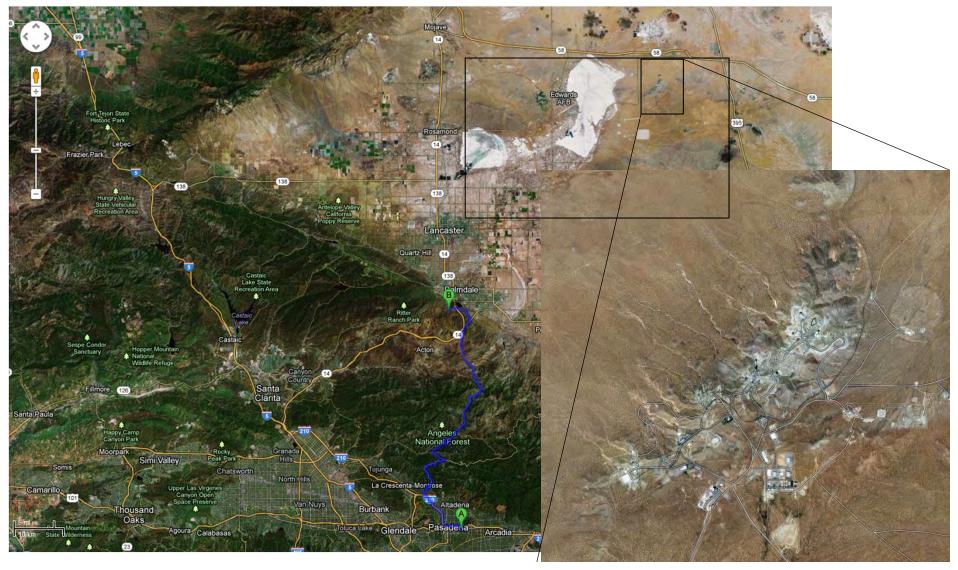
16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Wesley Hoffman	
a. REPORT	b. ABSTRACT	c. THIS PAGE	SAR	28	19b. TELEPHONE NO (include area code) 661-275-5768
Unclassified	Unclassified	Unclassified			

Synthesis and Reactivity of Backfluorinated NHC Carbene Complexes

Dr. Rusty Blanski

Professor Robert H. Grubbs California Institute of Technology, Pasadena, California

Introduction



- Introduction
- Proposed Research Overview
- Synthesis of Backfluorinated NHC Carbene Precursors
 - Synthesis of Ir complexes
 - IR study of Ir dicarbonyl complexes
 - Synthesis of Ru complexes
 - Reactivity of Ru complexes
- Conclusions and Future Directions

Edwards AFB – AFRL Rocket Propulsion Research

Palmdale to AFRL: 53 miles Located in the Middle of Nowhere

Edwards AFB

History

- Originally known as Muroc Army Air Corps Base
- Test flights of the YB-42 (first American Jet) in the early '40s
- Location where Chuck Yeager broke the Sound Barrier in the Bell X-1 (Original craft at the Smithsonian)
- X-15 sub-orbital flights in the '60s (Armstrong)

AFRL

- Tenant of Edwards AFB since late '50s
- Full scale testing of the Atlas rockets (Gemini missions)
- Initial testing of the F-1 engine (Apollo missions) performed on site in the mid '60s
- Large scale testing of solid rocket motors (Titan IV)
- "Iranian nuclear facility" destroyed by the Transformers in "Transformers: The Dark side of the Moon"

Edwards AFB – AFRL Projects

- The Air Force has an interest in NHC carbene precursors for a variety applications
 - lonic liquid propellants and additives
 - Ligands for Supercritical Chemical Fluid Deposition (SCFD)
- The Air Force also has an interest in fluorinated NHC carbenes
 - perfluoroalkyl chains generally known to improve solubility of systems in supercritical fluids
 - "Backfluorinated" NHC carbenes to improve solubility in supercritical fluids and perhaps maintain ligand stability
 - Surprisingly, the backfluorinated systems have never been reported

Potential for Collaboration Backfluorinated NHC-Ru Catalysts

- It was an easy leap to see that this technology should be applicable to other research areas
 - Hydrogenation in fluorinated solvents
 - Organic transformations in fluorinated solvents
 - Olefin metathesis in fluorinated solvents
 - Perhaps improved olefin metathesis of fluorinated olefins

Questions

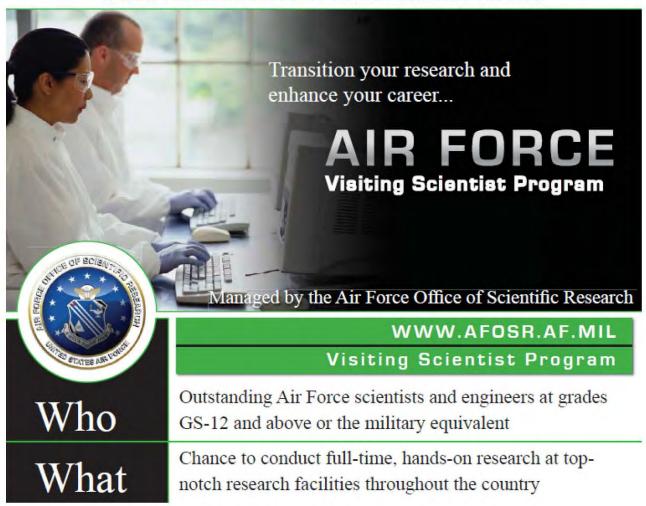
- How does the addition of a perfluoroalkyl chain to the back of an imidazolinylidene ligand affect its electronic properties?
- How does the addition of a perfluoroalkyl chain to the back of an imidazolinylidene ligand affect the catalytic properties of the ruthenium alkylidene complexes?
- Does the addition of perfluoralkyl chains improve the solubility of Ru alkylidene complexes in fluorinated solvents?

Fluoroalkene Metathesis

- Fluoroalkene metathesis first reported by Blechert in 2001
- 1st generation systems not effective
- 2nd generation systems are effective
 - 2nd Generation Grubbs-Hoveyda most effective

Fluoroalkene Metathesis

- Blechert (2001) found that cross metathesis of perfluorobutyl(ethene) and various allylics required 10 mol% of catalyst with generally good yields (7-95+%)
- Kotora (2010) found that the cross metathesis of perfluorohexyl(propene) and various allylics was effective for several systems but the yields varied considerably (11-70% yield)
- Also, when the perfluoroalkyl chain is longer (perfluorooctyl-, perfluorodecyl-), personal research suggests that the catalyst has solubility issues



AFOSR Visiting Scientist Program 6 Month Sabbatical to Research Institutions

AFOSR-TODAY'S BREAKTHROUGH SCIENCE FOR TOMORROW'S AIR FORCE

SPECIAL PROGRAMS: AIR FORCE VISITING SCIENTIST PROGRAM

Proposed Research

- Electronic effects will be investigated
 - Effect of perfluoroalkyl length and methylene "buffer" length
- Olefin metathesis activity will also be investigated

Synthetic Targets Imidazolinidene Complexes

$$F_3C - \left(CF_2\right)_3 \qquad F_3C - \left(CF_2\right)_5 \qquad F_3C - \left(CF_2\right)_7 \qquad F_3C - \left(CF_2\right)_9 \qquad \qquad \\ Mes - N - Mes \qquad Mes - Mes \qquad Mes - N - Mes \qquad Mes - N - Mes \qquad Mes - N - Me$$

Perfluoroalkyl chain length and "Buffer" length will be investigated

Preparation of Perfluoroalkyl Grignard Reagents

$$FCF_{2}CH_{2}CH_{2}CI \qquad \longrightarrow \qquad FCF_{2}CH_{2}CH_{2}MgCI$$

$$reflux \qquad \qquad FCF_{2}CH_{2}CH_{2}MgCI$$

$$F(CF_{2}CF_{2})_{n}CH_{2}CH_{2}I \qquad \longrightarrow \qquad F(CF_{2}CF_{2})_{n}CH_{2}CH_{2}MgI$$

$$n=3,4 \qquad \qquad Mg, thf$$

$$F(CF_{2}CF_{2})_{n}CH_{2}CH_{2}Br \qquad \longrightarrow \qquad F(CF_{2}CF_{2})_{n}CH_{2}CH_{2}MgBr$$

$$n=2,5 \qquad \longrightarrow \qquad F(CF_{2}CF_{2})_{n}CH_{2}CH_{2}CH_{2}Br$$

$$n=2,5 \qquad \longrightarrow \qquad F(CF_{2}CF_{2})_{n}CH_{2}CH_{2}CH_{2}Br$$

$$n=4 \qquad \longrightarrow \qquad Mg, thf$$

$$reflux \qquad \longrightarrow \qquad F(CF_{2}CF_{2})_{n}CH_{2}CH_{2}CH_{2}Br$$

$$n=4 \qquad \longrightarrow \qquad Mg, thf$$

$$reflux \qquad \longrightarrow \qquad F(CF_{2}CF_{2})_{n}CH_{2}CH_{2}CH_{2}CH_{2}Br$$

$$n=4 \qquad \longrightarrow \qquad F(CF_{2}CF_{2})_{n}CH_{2}CH_{2}CH_{2}CH_{2}Br$$

$$reflux \qquad \longrightarrow \qquad F(CF_{2}CF_{2})_{n}CH_{2}CH_{2}CH_{2}CH_{2}Br$$

$$reflux \qquad \longrightarrow \qquad F(CF_{2}CF_{2})_{n}CH_{2}CH_{2}CH_{2}CH_{2}Br$$

n=4

n=4

Synthetic Method #1 Grignard Addition/Reduction/Cyclization

$$Mes = Mesityl$$

$$R' = F_3C + CF_2 \choose n$$

$$Mes = Mesityl$$

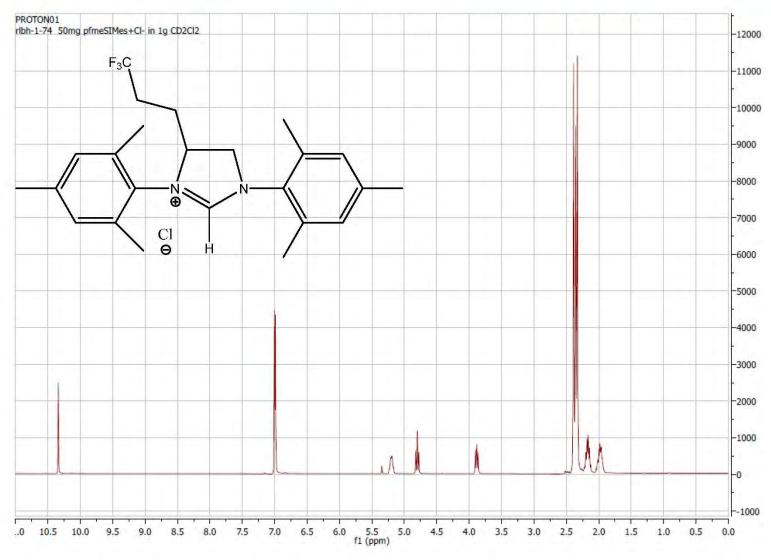
$$R' = F_3C + CF_2 \choose n$$

$$Mes = Mesityl$$

$$R' = F_3C + CF_2 \choose n$$

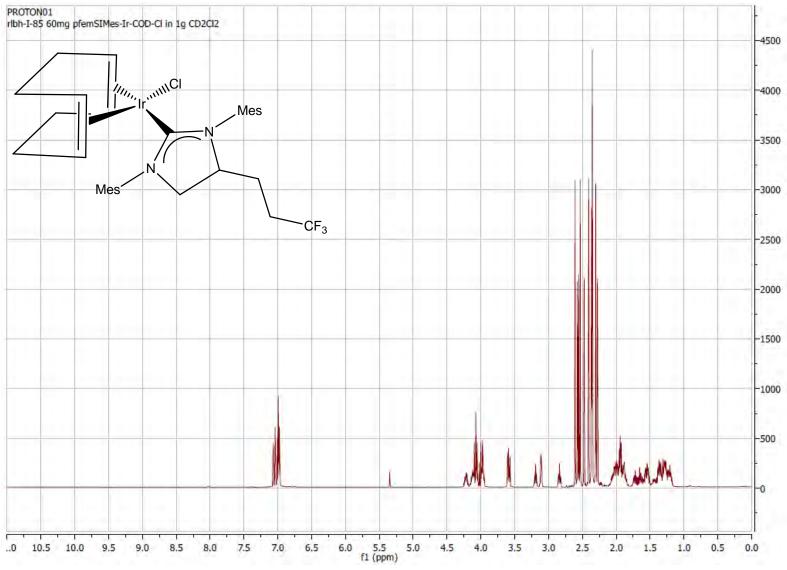
$$Mes = Mesityl$$

$$N = Mes$$

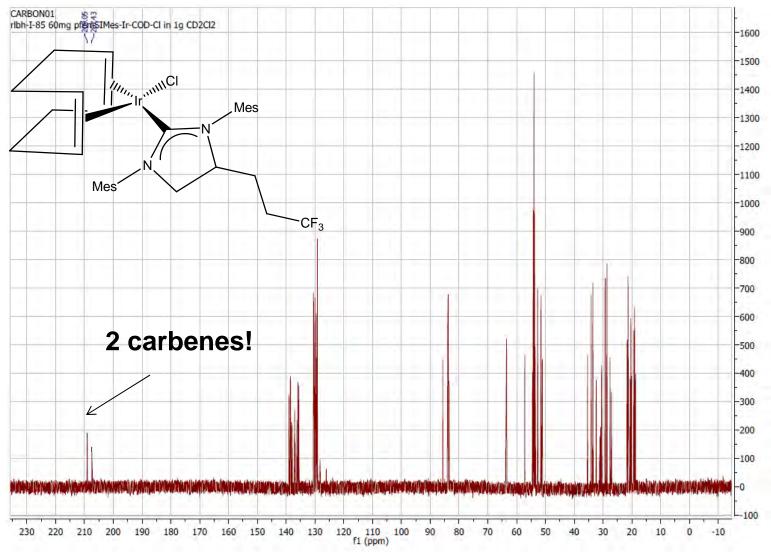

$$N$$

- Very general reaction pathway: suitable for all Grignard reagents
- Attempts at dialkylation unsuccessful
- Slight excess of Grignard reagent ensures complete monoalkylation

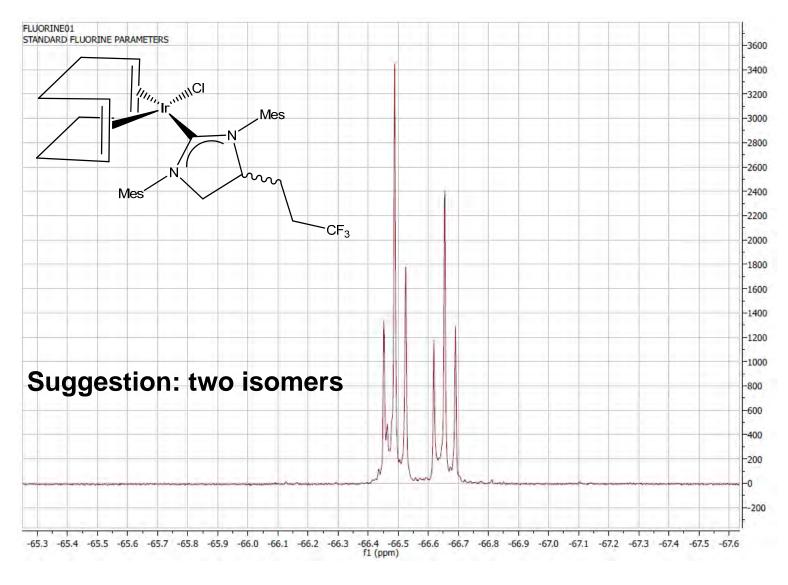
¹H Spectrum of pfme-SIMes+CI-



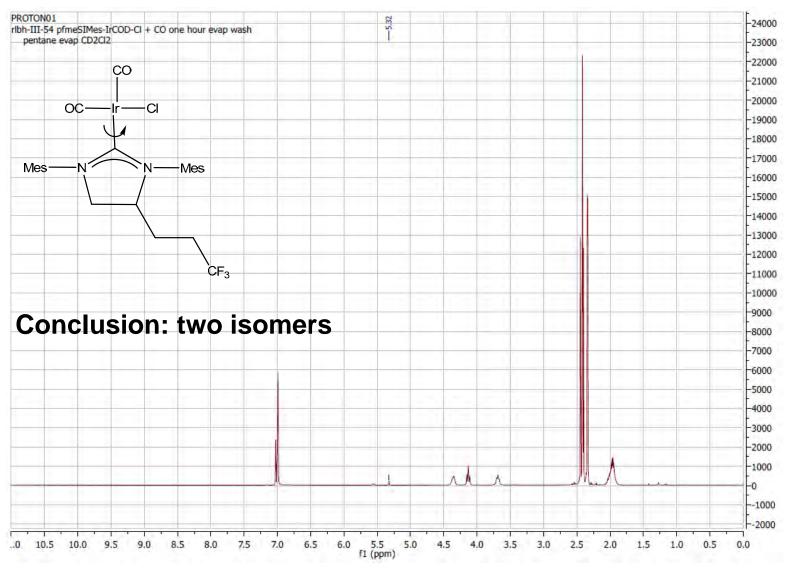
¹H Spectrum of pfme-SIMes-IrCOD-CI



¹³C Spectrum of pfme-SIMes-IrCOD-CI



¹⁹F Spectrum of pfme-SIMes-IrCOD-CI



¹H Spectrum of pfme-SIMes-Ir(CO)₂-CI

Potential Isomers in Solution

Ligand rotation observed upon heating in toluene-d₈

Backfluorinated NHC Complexes with (CO)₂-Ir-Cl in CD₂Cl₂(cm⁻¹)

Compound	Functional Group	νCO 1 st CO	νCΟ 2 nd CO	νCO Avg.
SIMes	Н	2068.0	1981.2	2024.6
pfme-SIMes	CF ₃ CH ₂ CH ₂	2068.8	1981.9	2025.4
pfbe-SIMes	F(CF ₂) ₄ CH ₂ CH ₂	2068.8	1981.9	2025.4
pfhe-SIMes	F(CF ₂) ₆ CH ₂ CH ₂	2069.1	1982.0	2025.6
pfoe-SIMes	F(CF ₂) ₈ CH ₂ CH ₂	2069.1	1982.0	2025.6
pfde-SIMes	F(CF ₂) ₁₀ CH ₂ CH ₂	2069.1	1982.1	2025.6
pfop-SIMes	F(CF ₂) ₈ CH ₂ CH ₂ CH ₂	2068.5	1981.2	2024.8

When buffer length is CH₂-CH₂, the perfluoroalkyl group appears to have a small electronic effect

Synthesis of Ru Complexes

- Green solid (same color as 2nd generation catalyst)
- Complex demonstrates metathesis activity
- Perfluorodecylethyl, perfluorooctylethyl and perfluorooctylpropyl complexes also synthesized

Partition Study

- Partition study with pfheSIMes 2nd Generation Grubbs-Hoveyda catalyst with toluene (upper phase) and perfluoromethyl cyclohexane (lower phase)
 - Insufficient backfluorination to improve solubility in perfluoromethylcyclohexane

Backfluorinated NHC Carbene complexes

Conclusions

- A series of backfluorinated imidazolinium NHC carbene complexes were synthesized
- Each backfluorinated NHC carbene-COD-iridium chloride complex is a mixture of two observable isomers due to the lack of rotation of the NHC carbene ligand
- The backfluorinated NHC carbene-dicarbonyliridium chloride complex is single compound due to rotation of the NHC carbene ligand
- An IR study of the backfluorinated NHC carbenedicarbonyl-iridium chloride complexes determined that the addition of a perfluoroalkyl chain slightly changes the electronics of the molecule.

Backfluorinated NHC Carbene complexes

Conclusions – Cont'd

- The IR study of the backfluorinated NHC carbenedicarbonyl-iridium chloride complexes also suggest that the electronic effects of the perfluoroalkyl group is independent of perfluoroalkyl chain length
- A series of the longer chain backfluorinated NHC Ruthenium alkylidene complexes were synthesized
- These complexes demonstrated metathesis activity similar to the nonflourinated alkylidene complex

Backfluorinated NHC Carbene Complexes

Future Work

- Look for methods to increase the amount of backfluorination of imidazolinium complexes
- Investigate the electronic effects of side fluorination of aromatic rings of imidazolinium complexes
- Investigate the use of the technology for other applications in order to improve sustainability

Acknowledgements

- Air Force
- Leslie Peasant (AFOSR)
- Dr. Ken Caster (AOARD)
- Kristen Schario (CRADA)
- Dr. Chastity Whitaker (CRADA)
- Lt. Col Brian Tidball (RQRC)
- Dr. Stephen Rodgers (RQR)
- Dr. Taewoo Park (RQR)
- Dr. Shawn Phillips (RQR)
- Dr. Siva Banda (RQ)

- Cal Tech
- Prof Grubbs
- Linda Syme (Admin)
- Grubbs Group
- Farnaz Bakhshi (CRADA)
- Dr. Dave Vandervelde (NMR)